Cutaneous TRPM8‐expressing sensory afferents are a small population of neurons with unique firing properties
نویسندگان
چکیده
It has been well documented that the transient receptor potential melastatin 8 (TRPM8) receptor is involved in environmental cold detection. The role that this receptor plays in nociception however, has been somewhat controversial since conflicting reports have shown different neurochemical identities and responsiveness of TRPM8 neurons. In order to functionally characterize cutaneous TRMP8 fibers, we used two ex vivo somatosensory recording preparations to functionally characterize TRPM8 neurons that innervate the hairy skin in mice genetically engineered to express GFP from the TRPM8 locus. We found several types of cold-sensitive neurons that innervate the hairy skin of the mouse but the TRPM8-expressing neurons were found to be of two specific populations that responded with rapid firing to cool temperatures. The first group was mechanically insensitive but the other did respond to high threshold mechanical deformation of the skin. None of these fibers were found to contain calcitonin gene-related peptide, transient receptor potential vanilloid type 1 or bind isolectin B4. These results taken together with other reports suggest that TRPM8 containing sensory neurons are environmental cooling detectors that may be nociceptive or non-nociceptive depending on the sensitivity of individual fibers to different combinations of stimulus modalities.
منابع مشابه
Central Connectivity of Transient Receptor Potential Melastatin 8-Expressing Axons in the Brain Stem and Spinal Dorsal Horn
Transient receptor potential melastatin 8 (TRPM8) ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized TRPM8-positive (+) neurons in the trigem...
متن کاملSensory discrimination between innocuous and noxious cold by TRPM8-expressing DRG neurons of rats
The TRPM8 channel is a principal cold transducer that is expressed on some primary afferents of the somatic and cranial sensory systems. However, it is uncertain whether TRPM8-expressing afferent neurons have the ability to convey innocuous and noxious cold stimuli with sensory discrimination between the two sub-modalities. Using rat dorsal root ganglion (DRG) neurons and the patch-clamp record...
متن کاملEnhanced behavioral responses to cold stimuli following CGRPα sensory neuron ablation are dependent on TRPM8
BACKGROUND Calcitonin gene-related peptide-α (CGRPα) is a classic marker of peptidergic nociceptive neurons and is expressed in myelinated and unmyelinated dorsal root ganglia (DRG) neurons. Recently, we found that ablation of Cgrpα-expressing sensory neurons reduced noxious heat sensitivity and enhanced sensitivity to cold stimuli in mice. These studies suggested that the enhanced cold respons...
متن کاملNeurturin overexpression in skin enhances expression of TRPM8 in cutaneous sensory neurons and leads to behavioral sensitivity to cool and menthol.
Neurturin (NRTN) is a member of the glial cell line-derived neurotrophic factor family of ligands that exerts its actions via Ret tyrosine kinase and GFRα2. Expression of the Ret-GFRα2 coreceptor complex is primarily restricted to the peripheral nervous system and is selectively expressed by sensory neurons that bind the isolectin B(4) (IB(4)). To determine how target-derived NRTN affects senso...
متن کاملVisualizing cold spots: TRPM8-expressing sensory neurons and their projections.
Environmental stimuli such as temperature and pressure are sensed by dorsal root ganglion (DRG) neurons. DRG neurons are heterogeneous, but molecular markers that identify unique functional subpopulations are mainly lacking. ThermoTRPs are members of the transient receptor potential family of ion channels and are gated by shifts in temperature. TRPM8 is activated by cooling, and TRPM8-deficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017